Tasa de filtración glomerular medida y estimada. Numerosos métodos de medición (Parte I)

Contenido principal del artículo

Jaime Pérez Loredo
Carlos Alberto Lavorato
Armando Luis Negri

Resumen

Una pérdida de la mitad de la masa renal no necesariamente tendrá la mitad de la TFG, es decir, no hay una correlación exacta entre la reducción de masa renal y la pérdida de función renal.
La tasa de filtración glomerular (TFG) es un índice necesario para diagnóstico, seguimiento de pacientes con deterioro de la función renal, chequeos epidemiológicos, ajuste de dosis de drogas nefrotóxicas o de eliminación renal, estadificación de la enfermedad renal crónica, etc.
En esta actualización se analiza brevemente los principales métodos utilizados con el fin de estimar el filtrado glomerular, algunas de sus fortalezas y debilidades. El empleo de la tasa de filtración glomerular estimada en estudios epidemiológicos ha contribuido a generar controversias de envergadura que más que resultar en un avance científico, han producido larguísimas discusiones como producto de sofismas y desvíos por estos cálculos.
Debería replantearse el aplicar ecuaciones de estimación de la TFG en estudios de laboratorio en la población, dada la imperfección de las mismas y a las dificultades en la interpretación de los resultados para el médico clínico no especialista en la materia.

Detalles del artículo

Cómo citar
1.
Pérez Loredo J, Lavorato CA, Negri AL. Tasa de filtración glomerular medida y estimada. Numerosos métodos de medición (Parte I). Rev Nefrol Dial Traspl. [Internet]. 22 de abril de 2017 [citado 27 de octubre de 2021];35(3):153-64. Disponible en: http://www.revistarenal.org.ar/index.php/rndt/article/view/34
Sección
Artículo Especial

Citas

1. Bright, R. Reports of Medical Cases, Selected with a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy. London: Richard Taylor for Longman, Rees, Orme, Brown, and Green, 1827-31. 2 v.

2. Bright R, Addison T. Elements of the Practice of Medicine. London: Longman, Orme, Brown, Green, and Longmans, 1839. V. 1, 613 p.

3. Bright R. Clinical Memoirs on Abdominal Tumours and Intumescence. London: The New Sydenham Society, 1860. 326 p.

4. Rehberg PB. Studies on Kidney Function: The Rate of Filtration and Reabsortion in the Human Kidney. Biochem J. 1926; 20(3):447-60.

5. Addis T, Oliver J. The Renal Lesion in Bright’s Disease. New York: Paul B. Hoeber, 1931. 628 p.

6. Hayman JM, Halsted JA, Seyler LE. A comparison of the creatinine and urea clearance tests of kidney function. J Clin Invest 1933;12(5):861-75.

7. Smith HW. Diseases of the Kidney and Urinary Tract, 836-87. In: The Kidney: Structure and Function in Health and Disease. New York: Oxford University Press, 1951. 1049 p.

8. Fraga A. Evaluación del filtrado glomerular en nefropatía por diabetes. Nefrología Argentina 2010; 8(Supl. 1):21-6.

9. National Institute of Diabetes and Digestive and Kidney Diseases (United States). National Kidney Disease Education Program. Disponible en: (consulta 10/07/2015).

10. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006; 52(1):5-18.

11. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006; 145(4):247-54.

12. Perazzi B, Angerosa M. Creatinina en sangre: calidad analítica e influencia en la estimación del Índice de Filtrado Glomerular. Acta Bioquím Clín Latinoam. 2011;45(2):265-72.

13. Levey AS. Measurement of renal function in chronic renal disease. Kidney Int. 1990; 38(1):167-84.

14. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992; 38(10):1933-53.

15. Watschinger B, Kobinger I. Clearance tests with polyfructosans (Inutest). Wien Z Inn Med. 1964; 45:219-28.

16. Schock-Kusch D, Xie Q, Shulhevich Y, Hesser J, Stsepankou D, Sadick M, et al. Transcutaneous assessment of renal function in conscious rats with a device for measuring FITC-sinistrin disappearance curves. Kidney Int. 2011; 79(11):1254-8.

17. Wang E, Meier DJ, Sandoval RM, Von Hendy-Willson VE, Pressler BM, Bunch RM, et al. A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int. 2012; 81(1):112-7.

18. Buclin T, Pechère-Bertschi A, Séchaud R, Décosterd LA, Munafo A, Burnier M, et al. Sinistrin clearance for determination of glomerular filtration rate: a reappraisal of various approaches using a new analytical method. J Clin Pharmacol. 1997; 37(8):679-92.

19. Priem F, Althaus H, Birnbaum M, Sinha P, Conradt HS, Jung K. Beta-trace protein in serum: a new marker of glomerular filtration rate in the creatinine-blind range. Clin Chem. 1999; 45(4):567-8.

20 Filler G, Priem F, Lepage N et al. Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem 2002;48:729-36.

21. Gerhardt T, Pöge U, Stoffel-Wagner B, Palmedo H, Sauerbruch T, Woitas RP. Is beta-trace protein an alternative marker of glomerular filtration rate in liver transplant recipients? Liver Int. 2011;31(9):1345-51.

22. Spanaus KS, Kollerits B, Ritz E, Hersberger M, Kronenberg F, von Eckardstein A, et al. Serum creatinine, cystatin C, and beta-trace protein in diagnostic staging and predicting progression of primary nondiabetic chronic kidney disease. Clin Chem. 2010; 56(5):740-9.

23. Löfberg H, Grubb AO. Quantitation of gammatrace in human biological fluids: indications for production in the central nervous system. Scand J Clin Lab Invest. 1979; 39(7):619-26.

24. Thomassen SA, Johannesen IL, Erlandsen EJ, Abrahamsen J, Randers E. Serum cystatin C as a marker of the renal function in patients with spinal cord injury. Spinal Cord. 2002; 40(10):524-8.

25. Delanaye P, Cavalier E, Radermecker RP, Paquot N, Depas G, Chapelle JP, et al. Cystatin C or creatinine for detection of stage 3 chronic kidney disease in anorexia nervosa. Nephron Clin Pract. 2008; 110(3):c158-63.

26. Grubb A, Nyman U, Björk J, Lindström V, Rippe B, Sterner G, et al. Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem. 2005;51(8):1420-31.

27. Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, et al. Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995;47(1):312-8.

28. Herget-Rosenthal S, Bökenkamp A, Hofmann W. How to estimate GFR-serum creatinine, serum cystatin C or equations? Clin Biochem. 2007; 40(3-4):153-61.

29. Rule AD, Bergstralh EJ, Slezak JM, Bergert J, Larson TS. Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006;69(2):399-405.

30. Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008; 51(3):395-406.

31. Lubowitz H, Slatopolsky E, Shankel S, Rieselbach RE, Bricker NS. Glomerular filtration rate. Determination in patients with chronic renal disease. JAMA. 1967;199(4):252-6.

32. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999; 130(6):461-70.

33. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31-41.

34. Walser M, Drew HH, Guldan JL. Prediction of glomerular filtration rate from serum creatinine concentration in advanced chronic renal failure. Kidney Int. 1993;44(5):1145-8.

35. Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004;141(12):929-37.

36. Rule AD, Rodeheffer RJ, Larson TS, Burnett JC Jr, Cosio FG, Turner ST, et al. Limitations of estimating glomerular filtration rate from serum creatinine in the general population. Mayo Clin Proc. 2006; 81(11):1427-34.

37. Stevens LA, Coresh J, Feldman HI, Greene T, Lash JP, Nelson RG, et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol. 2007; 18(10):2749-57.

38. Pottel H, Martens F. Are eGFR equations better than IDMS-traceable serum creatinine in classifying chronic kidney disease? Scand J Clin Lab Invest. 2009;69(5):550-61.

39. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150(9):604-12.

40. Inker LA, Eckfeldt J, Levey AS, Leiendecker-Foster C, Rynders G, Manzi J, et al. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis. 2011;58(4):682-4.

41. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012; 367(1):20-9.

42. Delanaye P, Cavalier E, Mariat C, Maillard N, Krzesinski JM. MDRD or CKD-EPI study equations for estimating prevalence of stage 3 CKD in epidemiological studies: which difference? Is this difference relevant? BMC Nephrol. 2010; 11:8.

43. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038-47.

44. Glassock RJ, Winearls C. An epidemic of chronic kidney disease: fact or fiction? Nephrol Dial Transplant. 2008; 23(4):1117-21.

45. Ferguson MA, Waikar SS. Established and emerging markers of kidney function. Clin Chem. 2012;58(4):680-9.

46. Chiurchiu C, Garces N, Garay G, Holtz R, Douthat W, de Arteaga J, et al. Utilidad de las ecuaciones basadas en la concentración sérica de cistatina C en el estudio de la función renal. Medicina (B Aires). 2007;67(2):136-42.

47. Rosa-Diez GJ, Varela F, Crucelegui S, Algranati SL, Greloni G. Comparación entre las ecuaciones CKDEPI y MDRD para la estimación del filtrado glomerular en pacientes con enfermedad renal crónica. Medicina (B Aires). 2011; 71(4):323-30.

48. Trimarchi H, Muryan A, Martino D, Toscano A, Iriarte R, Campolo-Girard V, et al. Evaluación del volumen de filtrado glomerular en la enfermedad renal crónica por las ecuaciones basadas en la creatinina vs. aquellas basadas en la cistatina C comparadas con el radiorrenograma con 99m TCDTPA en la Argentina. Nefrología Argentina 2012; 10(1):21-31.

49. Pérez-Loredo J, Lavorato CA, Negri AL, Der M, Lercari J, Casaliba A. Comparación gráfica de ecuaciones de estimación del filtrado glomerular. Rev Nefrol Diálisis Traspl 2011; 31(1):34-43.

50. Rossing P, Astrup AS, Smidt UM, Parving HH. Monitoring kidney function in diabetic nephropathy. Diabetologia. 1994; 37(7):708-12.

51. Nielsen S, Rehling M, Schmitz A, Mogensen CE. Validity of rapid estimation of glomerular filtration rate in type 2 diabetic patients with normal renal function. Nephrol Dial Transplant. 1999; 14(3):615-9.

52. Rossing P, Rossing K, Gaede P, Pedersen O, Parving HH. Monitoring kidney function in type 2 diabetic patients with incipient and overt diabetic nephropathy. Diabetes Care. 2006; 29(5):1024-30.

53. Fontseré N, Salinas I, Bonal J, Bayés B, Riba J, Torres F, et al. Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrol Dial Transplant. 2006;21(8):2152-8.

54. Poole SG, Dooley MJ, Rischin D. A comparison of bedside renal function estimates and measured glomerular filtration rate (Tc99mDTPA clearance) in cancer patients. Ann Oncol. 2002; 13(6):949-55.

55. White CA, Akbari A, Doucette S, Fergusson D, Knoll GA. Estimating glomerular filtration rate in kidney transplantation: is the new chronic kidney disease epidemiology collaboration equation any better? Clin Chem. 2010; 56(3):474-7.

56. Lin J, Knight EL, Hogan ML, Singh AK. A comparison of prediction equations for estimating glomerular filtration rate in adults without kidney disease. J Am Soc Nephrol. 2003; 14(10):2573-80.

57. Gaspari F, Ferrari S, Stucchi N, Centemeri E, Carrara F, Pellegrino M, et al. Performance of different prediction equations for estimating renal function in kidney transplantation. Am J Transplant. 2004; 4(11):1826-35.

58. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med. 2012; 156(11):785-95.

59. Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol. 2010; 5(6):1003-9.

60. Wright S, Klausner D, Baird B, Williams ME, Steinman T, Tang H, et al. Timing of dialysis initiation and survival in ESRD. Clin J Am Soc Nephrol. 2010;5(10):1828-35.

61. Rosansky S, Glassock RJ, Clark WF. Early start of dialysis: a critical review. Clin J Am Soc Nephrol. 2011;6(5):1222-8.

62. Korevaar JC, Jansen MA, Dekker FW, Jager KJ, Boeschoten EW, Krediet RT, et al. When to initiate dialysis: effect of proposed US guidelines on survival. Lancet. 2001;358(9287):1046-50.

63. Marinovich S, Pérez-Loredo J, Lavorato C, Rosa Diez G, Bisigniano L, Fernández V, et al. Initial glomerular filtration rate and survival in hemodialysis. The role of permanent vascular access. Nefrología. 2014;34(1):76-87.

64. McIntosh JF, Möller E, Van Slyke DD. Studies on urea excretion. III: The influence of body size on urea output. J Clin Invest. 1928;6(3):467-83.

65. Dreyer G, Ainley Walker EW, Ray W. On the blood volume of warm blooded animals; together with an inquiry into the value of some results obtained by the carbon monoxide method in health and disease. Skand Arch Physiol. 1913;28(1):299-324.

66. Taylor FB, Drury DR, Addis T. The regulation of renal activity. VIII. The relation between the rate of urea excretion and the size of the kidneys. Am J Physiol. 1923;65: 55-61.

67. MacKay EM. Kidney weight, body size and renal function. Arch Intern Med 1932;50(4):590-4.

68. Fisk EL, Crawford JR. How to make the periodic health examination: a manual of procedure. New York: Macmillan, 1927. 393 p.

69. Rubner, M. Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel. Ztschr f Biol.1883;19(4):535-2.

70. Meeh, K. Oberflächenmessungen des menschlichen Körpers. Ztschr f Biol. 1879;15(3):425-5.

71. Du Bois D, Du Bois EF. Clinical calorimetry: tenth paper a formula to estimate the approximate surface area of newborn infants. Arch Intern Med. 1916;17(6):863-1.

72. Faber HK, Melcher MS. A modification of the Du Bois height-weight formula for surface area of newborn infants. Proc Soc Exp Biol Med. 1921;19:53-4.

73. Boyd E. The growth of the surface of the human body. Minneapolis: University of Minnesota Press, 1935. 145 p.

74. Stevenson PH. Height-weight-surface formula for the estimation of body surface area in Chinese subjects. Chin J Physiol. 1937; 12:327-34.

75. Banerjee S, Sen R. Determination of the surface area of the body of Indians. J Appl Physiol. 1955;7(6):585-8.

76. Banerjee S, Bhattacharya AK. Determination of body surface area in Indian Hindu children. J Appl Physiol. 1961;16(6):969-70.

77. Fujimoto S, Watanabe T, Sakamoto A, Yukawa K, Morimoto K. Studies on the physical surface area of Japanese. 18. Calculation formulas in three stages over all ages. Nihon Eiseigaku Zasshi. 1968;23(5):443-50.

78. Gehan EA, George SL. Estimation of human body surface area from height and weight. Cancer Chemother Rep. 1970;54(4):225-35.

79. Nwoye LO. Body surface area of Africans: a study based on direct measurements of Nigerian males. Hum Biol. 1989;61(3):439-57.

80. Shuter B, Aslani A. Body surface area: Du Bois and Du Bois revisited. Eur J Appl Physiol. 2000;82(3):250-4.

81. Livingston EH, Lee S. Body surface area prediction in normal-weight and obese patients. Am J Physiol Endocrinol Metab. 2001;281(3):E586-91.

82. Tikuisis P, Meunier P, Jubenville CE. Human body surface area: measurement and prediction using three dimensional body scans. Eur J Appl Physiol. 2001;85(3-4):264-71.

83. Nwoye LO, Al-Shehri MA. A formula for the estimation of the body surface area of Saudi male adults. Saudi Med J. 2003;24(12):1341-6.

84. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 1987; 317(17):1098.

85. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a heightweight formula validated in infants, children, and adults. J Pediatr. 1978;93(1):62-6.

86. Yu CY, Lin CH, Yang YH. Human body surface area database and estimation formula. Burns. 2010;36(5):616-29.

87. Costeff H. A simple empirical formula for calculating approximate surface area in children. Arch Dis Child. 1966; 41(220):681-3.

88. Verbraecken J, Van de Heyning P, De Backer W, Van Gaal L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism. 2006;55(4):515-24.

89. National Kidney Foundation. K/DOQI clinical practice guidelines on chronic kidney disease: evaluation, classification and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Guideline 4 Estimation of GFR. Am J Kidney Dis 2002; 39(2 Suppl. 1):S76–S92.

90. Richard A. Kronmal RA. Spurious Correlation and the Fallacy of the Ratio Standard Revisited. J R Stat Soc Ser A Stat Soc. 1993;156(3):379-92.

91. Hoste L, Pottel H. Is body surface area the appropiate index for glomerular filtration rate? En: Sahay M, ed. Basic Nephrology. InTech: 2012, p. 3-20.

92. Teruel JL, Sabater J, Galeano C, Rivera M, Merino JL, Fernández Lucas M, et al. La ecuación de Cockcroft-Gault es preferible a la ecuación MDRD para medir el filtrado glomerular en la insuficiencia renal crónica avanzada. Nefrología. 2007;27(3):313-9.

93. Delanaye P, Krzesinski JM. Indexing of renal function parameters by body surface area: intelligence or folly? Nephron Clin Pract. 2011;119 (4):c289-92.

94. Geddes CC, Woo YM, Brady S. Glomerular filtration rate. What is the rationale and justification of normalizing GFR for body surface area? Nephrol Dial Transplant. 2008;23(1):4-6.

95. Schmieder RE, Beil AH, Weihprecht H, Messerli FH. How should renal hemodynamic data be indexed in obesity? J Am Soc Nephrol. 1995;5(9):1709-13.

96. Anastasio P, Spitali L, Frangiosa A, Molino D, Stellato D, Cirillo E, et al. Glomerular filtration rate in severely overweight normotensive humans. Am J Kidney Dis. 2000;35(6):1144-8.

97. Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U. Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol. 2000;278(5):F817-22.

98. Usatchov N, Zhouckova AV, Pushkarev AA, Schlyakhto EV,. Renal function and haemodynamics in obese hypertensive patients. J Clin Basic Cardiol. 1999;2(1):73-4.

99. Ribstein J, du Cailar G, Mimran A. Combined renal effects of overweight and hypertension. Hypertension. 1995;26(4):610-5.

100. Peters AM. The kinetic basis of glomerular filtration rate measurement and new concepts of indexation to body size. Eur J Nucl Med Mol Imaging. 2004;31(1):137-49.

101. Eriksen BO, Melsom T, Mathisen UD, Jenssen TG, Solbu MD, Toft I. GFR normalized to total body water allows comparisons across genders and body sizes. J Am Soc Nephrol. 2011;22(8):1517-25.

102. Corsonello A, Pedone C, Lattanzio F, Semeraro R, D’Andria F, Gigante M, et al. Agreement between equations estimating glomerular filtration rate in elderly nursing home residents and in hospitalised patients: implications for drug dosing. Age Ageing. 2011;40(5):583-9.

103. Stevens LA, Nolin TD, Richardson MM, Feldman HI, Lewis JB, Rodby R, et al. Comparison of drug dosing recommendations based on measured GFR and
kidney function estimating equations. Am J Kidney Dis. 2009;54(1):33-42.

104. Jones G. Estimating renal function for drug dosing decisions. Clin Biochem Rev. 2011; 32(2):81-8.

105. Rostoker G, Andrivet P, Pham I, Griuncelli M, Adnot S. A modified Cockcroft-Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate. J Nephrol 2007;20(5): 576-85.

106. Calvert AH, Newell DR, Gumbrell LA, O’Reilly S, Burnell M, Boxall FE, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol. 1989;7(11):1748-56.

107. Craig AJ, Samol J, Heenan SD, Irwin AG, Britten A. Overestimation of carboplatin doses is avoided by radionuclide GFR measurement. Br J Cancer. 2012;107(8):1310-6.

108. De Lemos ML, Hsieh T, Hamata L, Levin A, Swenerton K, Djurdjev O, et al. Evaluation of predictive formulae for glomerular filtration rate for carboplatin dosing in gynecological malignancies. Gynecol Oncol. 2006;103(3):1063-9.

109. Peral-Aguirregoitia J, Lertxundi-Etxebarria U, Saracho-Rotaeche R, Iturrizaga-Correcher S, Martínez-Bengoechea MJ. Estimación de la tasa de filtración glomerular para el ajuste posológico de los fármacos: reina la confusion. Nefrología. 2012;32(1):115-7.

110. Singer MA. Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am J Kidney Dis. 2001;37(1):164-178.

111. White CR, Blackburn TM, Seymour RS. Phylogenetically informed analysis of the allometry of Mammalian Basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution. 2009;63(10):2658-67.

112. Kleiber M. Body size and metabolism. Hilgardia. 1932;6(11):315-53.

113. Kolokotrones T, Van Savage, Deeds EJ, Fontana W. Curvature in metabolic scaling. Nature. 2010;464(7289):753-6.

114. Hu TM, Hayton WL. Allometric scaling of xenobiotic clearance: uncertainty versus universality. AAPS PharmSci. 2001;3(4):E29.

115. Heaf JG. The origin of the 1 x 73-m2 body surface area normalization: problems and implications. Clin Physiol Funct Imaging. 2007;27(3):135-7.

116. Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet. 2009; 24(1):16-24.

117. Young JF, Luecke RH, Pearce BA, Lee T, Ahn H, Baek S, et al. Human organ/tissue growth algorithms that include obese individuals and black/white population organ weight similarities from autopsy data. J Toxicol Environ Health A. 2009;72(8):527-40.

118. Chagnac A, Herman M, Zingerman B, Erman A, Rozen-Zvi B, Hirsh J, et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant. 2008;23(12):3946-52.

119. Demirovic JA, Pai AB, Pai MP: Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm 2009;66(7):642-8.

120. Duffull SB, Dooley MJ, Green B, Poole SG, Kirkpatrick CM. A standard weight descriptor for dose adjustment in the obese patient. Clin Pharmacokinet. 2004;43(15):1167-78.

121. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051-65.

122. Hume R, Goldberg A. Actual and predictednormal-cell and plasma volumes in primary and secondary polycythaemia. Clin Sci. 1964;26:499-508.

123. Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol. 2004; 58(2):119-33.

124. Janmahasatian S, Duffull SB, Chagnac A, Kirkpatrick CM, Green B. Lean body mass normalizes the effect of obesity on renal function. Br J Clin Pharmacol. 2008;65(6):964-5.

125. McLeay SC, Morrish GA, Kirkpatrick CM, Green B. Encouraging the move towards predictive population models for the obese using propofol as a motivating example. Pharm Res. 2009;26(7):1626-34.

126. Devine BJ. Gentamicin therapy. Drug Intell Clin Pharm. 1974;8:650-5.

127. Redal-Baigorri B, Rasmussen K, Heaf JG. The use of absolute values improves performance of estimation formulae: a retrospective cross sectional study. BMC Nephrol. 2013;14:271.