Resultados y reproducibilidad a corto plazo de la prueba de lanzadera incremental (Incremental Shuttle Walking Test) en pacientes con enfermedad renal crónica en hemodiálisis

Contenido principal del artículo

Camila Mautner
Nataly Schneider
Rodrigo Contreras
Claudio Báez
Iván Rodríguez-Núñez

Resumen

Antecedentes: La prueba de lanzadera incremental ha sido empleada para determinar la capacidad física en pacientes con enfermedad renal crónica. Sin embargo, su aplicabilidad y reproducibilidad ha sido poco estudiada en pacientes bajo tratamiento de hemodiálisis. El objetivo de este estudio fue evaluar el rendimiento y reproducibilidad de la prueba de lanzadera incremental en pacientes con enfermedad renal crónica en hemodiálisis. Material y métodos: Se incluyeron pacientes con enfermedad renal crónica en diálisis y sujetos sin enfermedad renal crónica. Cada individuo realizó dos pruebas de lanzadera incremental con un intervalo de 30 minutos. Se registró la distancia recorrida, velocidad máxima, frecuencia cardiaca y el esfuerzo percibido. La reproducibilidad se analizó mediante el cálculo del coeficiente de correlación intraclase y el error estándar de la media. Mediante el método de Bland-Altman, se calculó la discordancia de la distancia recorrida y la frecuencia cardiaca pico. Además, se calculó el cambio mínimo detectable para todos los parámetros de la prueba de lanzadera incremental. Un valor de p=<0,05 se consideró significativo. Resultados: 68 sujetos entraron al estudio (34 pacientes con enfermedad renal crónica y 34 sujetos en el grupo control). Los pacientes con enfermedad renal crónica caminaron una menor distancia recorrida respecto al grupo control (-40%; p=<0,0001). En ambos grupos, se encontró una excelente confiabilidad test/retest en todas las medidas de resultado (cálculo del coeficiente de correlación intraclase >0,80). Los registros del error estándar de medición y cambio mínimo detectable para la distancia recorrida fueron de 26,0 m y 72,1 m, respectivamente. El método de Bland-Altman para la distancia recorrida mostró una diferencia media de -0,9 m con límites de concordancia entre 65,5 y -63,7 m. Conclusión: Los pacientes con enfermedad renal crónica en hemodiálisis presentan un menor rendimiento durante la prueba de lanzadera incremental comparado con individuos sin enfermedad renal crónica. Las medidas de resultado de la prueba de lanzadera incremental presentan una alta reproducibilidad test/retest a corto plazo en este grupo de pacientes.

Detalles del artículo

Cómo citar
1.
Mautner C, Schneider N, Contreras R, Báez C, Rodríguez-Núñez I. Resultados y reproducibilidad a corto plazo de la prueba de lanzadera incremental (Incremental Shuttle Walking Test) en pacientes con enfermedad renal crónica en hemodiálisis. Rev Nefrol Dial Traspl. [Internet]. 22 de junio de 2021 [citado 21 de septiembre de 2021];41(2):89-. Disponible en: https://www.revistarenal.org.ar/index.php/rndt/article/view/645
Sección
Artículo Original

Citas

1) Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol. 2017;13(2):104-14. doi: 10.1038/nrneph.2016.163.

2) Biljak VR, Aakre KM, Yucel D, Bargnoux AS, Cristol JP, Piéroni L. A Pathway to National Guidelines for Laboratory Diagnostics of Chronic Kidney Disease - Examples from Diverse European Countries. EJIFCC. 2017;28(4):289-301.

3) Carney EF. The impact of chronic kidney disease on global health. Nat Rev Nephrol. 2020;16(5):251. doi: 10.1038/s41581-020-0268-7.

4) Pecoits-Filho R, Sola L, Correa-Rotter R, Claure-Del Granado R, Douthat WG, Bellorin-Font E; International Society of Nephrology Regional Board. Kidney disease in Latin America: current status, challenges, and the role of the ISN in the development of nephrology in the region. Kidney Int. 2018;94(6):1069-72. doi: 10.1016/j.kint.2018.07.026.

5) Schardong J, Marcolino MAZ, Plentz RDM. Muscle atrophy in chronic kidney disease. Adv Exp Med Biol. 2018;1088:393-412. doi: 10.1007/978-981-13-1435-3_18.

6) Pereira RA, Cordeiro AC, Avesani CM, Carrero JJ, Lindholm B, Amparo FC, et al. Sarcopenia in chronic kidney disease on conservative therapy: prevalence and association with mortality. Nephrol Dial Transplant. 2015;30(10):1718-25. doi: 10.1093/ndt/gfv133.

7) Andrade FP, Rezende PS, Ferreira TS, Borba GC, Müller AM, Rovedder PME. Effects of intradialytic exercise on cardiopulmonary capacity in chronic kidney disease: systematic review and meta-analysis of randomized clinical trials. Sci Rep. 2019;9(1):18470. doi: 10.1038/s41598-019-54953-x.

8) Torino C, Manfredini F, Bolignano D, Aucella F, Baggetta R, Barillà A, et al.; EXCITE Working Group. Physical performance and clinical outcomes in dialysis patients: a secondary analysis of the EXCITE trial. Kidney Blood Press Res. 2014;39(2-3):205-11. doi: 10.1159/000355798.

9) O'Hare AM, Tawney K, Bacchetti P, Johansen KL. Decreased survival among sedentary patients undergoing dialysis: results from the dialysis morbidity and mortality study wave 2. Am J Kidney Dis. 2003;41(2):447-54. doi: 10.1053/ajkd.2003.50055.

10) Tran D. Cardiopulmonary Exercise Testing. Methods Mol Biol. 2018;1735:285-95. doi: 10.1007/978-1-4939-7614-0_18.

11) Shi Y, Zheng D, Zhang L, Yu Z, Yan H, Ni Z, et al. Six-minute walk test predicts all-cause mortality and technique failure in ambulatory peritoneal dialysis patients. Nephrology (Carlton). 2017;22(2):118-24. doi: 10.1111/nep.12726.

12) Fassbinder TR, Winkelmann ER, Schneider J, Wendland J, Oliveira OB. Functional capacity and quality of life in patients with chronic kidney disease in pre-dialytic treatment and on hemodialysis: a cross sectional study. J Bras Nefrol. 2015;37(1):47-54. doi: 10.5935/0101-2800.20150008.

13) Kohl L de M, Signori LU, Ribeiro RA, Silva AM, Moreira PR, Dipp T, et al. Prognostic value of the six-minute walk test in end-stage renal disease life expectancy: a prospective cohort study. Clinics (Sao Paulo). 2012;67(6):581-6. doi: 10.6061/clinics/2012(06)06.

14) Gollie JM, Harris-Love MO, Patel SS, Argani S. Chronic kidney disease: considerations for monitoring skeletal muscle health and prescribing resistance exercise. Clin Kidney J. 2018 ;11(6):822-831. doi: 10.1093/ckj/sfy054.

15) Wilkinson TJ, Xenophontos S, Gould DW, Vogt BP, Viana JL, Smith AC, et al. Test-retest reliability, validation, and "minimal detectable change" scores for frequently reported tests of objective physical function in patients with non-dialysis chronic kidney disease. Physiother Theory Pract. 2019;35(6):565-76. doi: 10.1080/09593985.2018.1455249.

16) Hadjiioannou I, Wong K, Lindup H, Mayes J, Castle E, Greenwood S. Test-retest reliability for physical function measures in patients with chronic kidney disease. J Ren Care. 2020;46(1):25-34. doi: 10.1111/jorc.12310.

17) Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019-24. doi: 10.1136/thx.47.12.1019.

18) Wilund KR, Tomayko EJ, Wu PT, Ryong Chung H, Vallurupalli S, Lakshminarayanan B, Fernhall B. Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. Nephrol Dial Transplant. 2010;25(8):2695-701. doi: 10.1093/ndt/gfq106.

19) Greenwood SA, Lindup H, Taylor K, Koufaki P, Rush R, Macdougall IC, et al. Evaluation of a pragmatic exercise rehabilitation programme in chronic kidney disease. Nephrol Dial Transplant. 2012;27(Suppl. 3):iii126-34. doi: 10.1093/ndt/gfs272.

20) Greenwood SA, Castle E, Lindup H, Mayes J, Waite I, Grant D, et al. Mortality and morbidity following exercise-based renal rehabilitation in patients with chronic kidney disease: the effect of programme completion and change in exercise capacity. Nephrol Dial Transplant. 2019;34(4):618-25. doi: 10.1093/ndt/gfy351.

21) Singh SJ, Morgan MD, Hardman AE, Rowe C, Bardsley PA. Comparison of oxygen uptake during a conventional treadmill test and the shuttle walking test in chronic airflow limitation. Eur Respir J. 1994;7(11):2016-20.

22) Parreira VF, Janaudis-Ferreira T, Evans RA, Mathur S, Goldstein RS, Brooks D. Measurement properties of the incremental shuttle walk test. a systematic review. Chest. 2014;145(6):1357-69. doi: 10.1378/chest.13-2071.

23) Xenophontos S, Wilkinson TJ, Gould DW, Watson EL, Viana JL, Smith AC. Peak aerobic capacity from incremental shuttle walk test in chronic kidney disease. J Ren Care. 2019;45(3):185-92. doi: 10.1111/jorc.12293.

24) Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428-46. doi: 10.1183/09031936.00150314.

25) Singh SJ, Puhan MA, Andrianopoulos V, Hernandes NA, Mitchell KE, Hill CJ, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1447-78. doi: 10.1183/09031936.00150414.

26) Broers NJH, Martens RJH, Cornelis T, van der Sande FM, Diederen NMP, Hermans MMH, et al. Physical activity in end-stage renal disease patients: the effects of starting dialysis in the first 6 months after the transition period. Nephron. 2017;137(1):47-56. doi: 10.1159/000476072.

27) Hadjiioannou I, Wong K, Lindup H, Mayes J, Castle E, Greenwood S. Test-Retest Reliability for Physical Function Measures in Patients with Chronic Kidney Disease. J Ren Care. 2020;46(1):25-34. doi: 10.1111/jorc.12310.

28) Peixoto-Souza FS, Sampaio LM, de Campos EC, Cangussu Barbalho-Moulim M, Nascimento de Araujo P, Laurino Neto RM, et al. Reproducibility of the incremental shuttle walk test for women with morbid obesity. Physiother Theory Pract. 2015;31(6):428-32. doi: 10.3109/09593985.2015.1010242.

29) Lu MJ, Zhong WH, Liu YX, Miao HZ, Li YC, Ji MH. Sample size for assessing agreement between two methods of measurement by Bland-Altman Method. Int J Biostat. 2016;12(2):/j/ijb.2016.12.issue-2/ijb-2015-0039/ijb-2015-0039.xml. doi: 10.1515/ijb-2015-0039.

30) Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol. 2016;116(3):563-71. doi: 10.1007/s00421-015-3303-9.

31) Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.

32) Neves CD, Lacerda AC, Lage VK, Lima LP, Fonseca SF, de Avelar NC, et al. Cardiorespiratory responses and prediction of peak oxygen uptake during the shuttle walking test in healthy sedentary adult men. PLoS One. 2015;10(2):e0117563. doi: 10.1371/journal.pone.0117563.

33) de Camargo AA, Justino T, de Andrade CH, Malaguti C, Dal Corso S. Chester step test in patients with COPD: reliability and correlation with pulmonary function test results. Respir Care. 2011;56(7):995-1001. doi: 10.4187/respcare.01047.

34) de Vet HC, Terwee CB, Knol DL, Bouter LM. When to use agreement versus reliability measures. J Clin Epidemiol. 2006;59(10):1033-9. doi: 10.1016/j.jclinepi.2005.10.015.

35) Rogan A, McCarthy K, McGregor G, Hamborg T, Evans G, Hewins S, et al. Quality of life measures predict cardiovascular health and physical performance in chronic renal failure patients. PLoS One. 2017;12(9):e0183926. doi: 10.1371/journal.pone.0183926.

36) Ting SM, Hamborg T, McGregor G, Oxborough D, Lim K, Koganti S, et al. Reduced cardiovascular reserve in chronic kidney failure: a matched cohort study. Am J Kidney Dis. 2015;66(2):274-84. doi: 10.1053/j.ajkd.2015.02.335.

37) Faria R de S, Fernandes N, Lovisi JC, Reboredo Mde M, Marta MS, Pinheiro Bdo V, Bastos MG. Pulmonary function and exercise tolerance are related to disease severity in pre-dialytic patients with chronic kidney disease: a cross-sectional study. BMC Nephrol. 2013;14:184. doi: 10.1186/1471-2369-14-184.

38) Jürgensen SP, Antunes LC, Tanni SE, Banov MC, Lucheta PA, Bucceroni AF, et al. The incremental shuttle walk test in older Brazilian adults. Respiration. 2011;81(3):223-8. doi: 10.1159/000319037.

39) Chen CN, Chuang LM, Wu YT. Clinical measures of physical fitness predict insulin resistance in people at risk for diabetes. Phys Ther. 2008;88(11):1355-64. doi: 10.2522/ptj.20080064.

40) Ramos RA, Guimarães FS, Dionyssiotis Y, Tsekoura D, Papathanasiou J, Ferreira AS. Development of a multivariate model of the six-minute walked distance to predict functional exercise capacity in hypertension. J Bodyw Mov Ther. 2019;23(1):32-8. doi: 10.1016/j.jbmt.2018.01.010.

41) Ribeiro LR, Mesquita RB, Vidotto LS, Merli MF, Carvalho DR, de Castro LA, et al. Are 30 minutes of rest between two incremental shuttle walking tests enough for cardiovascular variables and perceived exertion to return to baseline values? Braz J Phys Ther. 2015;19(2):105-13. doi: 10.1590/bjpt-rbf.2014.0078.

42) Probst VS, Hernandes NA, Teixeira DC, Felcar JM, Mesquita RB, Gonçalves CG, et al. Reference values for the incremental shuttle walking test. Respir Med. 2012;106(2):243-8. doi: 10.1016/j.rmed.2011.07.023.

43) Kurella Tamura M, Covinsky KE, Chertow GM, Yaffe K, Landefeld CS, McCulloch CE. Functional status of elderly adults before and after initiation of dialysis. N Engl J Med. 2009;361(16):1539-47. doi: 10.1056/NEJMoa0904655.

44) Hung RK, Al-Mallah MH, Whelton SP, Michos ED, Blumenthal RS, Ehrman JK, et al. Effect of beta-blocker therapy, maximal heart rate, and exercise capacity during stress testing on long-term survival (from The Henry Ford Exercise Testing Project). Am J Cardiol. 2016;118(11):1751-7. doi: 10.1016/j.amjcard.2016.08.060.

45) Beninato M, Portney LG. Applying concepts of responsiveness to patient management in neurologic physical therapy. J Neurol Phys Ther. 2011;35(2):75-81. doi: 10.1097/NPT.0b013e318219308c.

46) Singh SJ, Jones PW, Evans R, Morgan MD. Minimum clinically important improvement for the incremental shuttle walking test. Thorax. 2008;63(9):775-7. doi: 10.1136/thx.2007.081208.

47) Carrero JJ, Johansen KL, Lindholm B, Stenvinkel P, Cuppari L, Avesani CM. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016;90(1):53-66. doi: 10.1016/j.kint.2016.02.025.